Correlation of PARP1 with CTCF ChIP-Seq

We will analyze the correlation of nucleosome associated PARP1 reads with CTCF ChIP-seq. The CTCF ChIP-seq is from the UCSC/ENCODE data portal. The PARP1 reads and CTCF ChIP-seq data has already been processed and is made available as part of the fmdatabreastcaparp1 package.

library(GenomicRanges)
library(ggplot2)
library(BSgenome.Hsapiens.UCSC.hg19)
library(fmcorrelationbreastcaparp1)
library(fmdatabreastcaparp1)

Load the PARP1 data.

data(tss_windows)
data(parp1_ln4_unique)
data(parp1_ln5_unique)

Calculate the weighted coverage of the ln4 and ln5 sample reads, and then sum the reads in each TSS window.

mcf7_cov <- coverage(parp1_ln4_unique, weight = "n_count")
mdamb231_cov <- coverage(parp1_ln5_unique, weight = "n_count")

tss_windows <- binned_function(tss_windows, mcf7_cov, "sum", "parp1_mcf7")
tss_windows <- binned_function(tss_windows, mdamb231_cov, "sum", "parp1_mdamb231")

Load the CTCT ChIP-seq data, and average the ChIP-seq peaks in each TSS window.

data(ctcf_rep1)
data(ctcf_rep2)
ctcf_r1_cov <- coverage(ctcf_rep1, weight = "mcols.signal")
ctcf_r2_cov <- coverage(ctcf_rep2, weight = "mcols.signal")
tss_windows <- binned_function(tss_windows, ctcf_r1_cov, "mean_nozero", "ctcf_r1")
tss_windows <- binned_function(tss_windows, ctcf_r2_cov, "mean_nozero", "ctcf_r2")

Now with the Parp1 reads and CTCF ChIP-Seq data, we can start doing some correlations.

non_zero <- "both"

Start with a sampling of points and graph and generate a correlation.

r1_v_mcf7 <- subsample_nonzeros(mcols(tss_windows), c("ctcf_r1", "parp1_mcf7"), non_zero = non_zero, n_points = 10000)
ggplot(r1_v_mcf7, aes(x = ctcf_r1, y = parp1_mcf7)) + geom_point() + scale_y_log10() + scale_x_log10()

plot of chunk graphit

cor(log10(r1_v_mcf7[,1]+1), log10(r1_v_mcf7[,2]+1))
## [1] 0.1219387
r2_v_mcf7 <- subsample_nonzeros(mcols(tss_windows), c("ctcf_r2", "parp1_mcf7"), non_zero = non_zero, n_points = 10000)
ggplot(r2_v_mcf7, aes(x = ctcf_r2, y = parp1_mcf7)) + geom_point() + scale_y_log10() + scale_x_log10()

plot of chunk graphit

cor(log10(r2_v_mcf7[,1]+1), log10(r2_v_mcf7[,2]+1))
## [1] 0.2111723

Now do them all.

all_comb <- expand.grid(c("ctcf_r1", "ctcf_r2"), c("parp1_mcf7", "parp1_mdamb231"), stringsAsFactors = FALSE)
out_cor <- lapply(seq(1, nrow(all_comb)), function(i_row){
  #print(i_row)
  correlate_non_zero(mcols(tss_windows), as.character(all_comb[i_row,]), log_transform = TRUE, non_zero = non_zero, test = TRUE)
})
all_comb_names <- paste(all_comb[,1], all_comb[,2], sep = "_v_")
out_cor <- do.call(rbind, out_cor)
rownames(out_cor) <- all_comb_names

TSS correlations:

corr_value p_value
ctcf_r1_v_parp1_mcf7 0.1138285 0
ctcf_r2_v_parp1_mcf7 0.1959455 0
ctcf_r1_v_parp1_mdamb231 0.0446777 0
ctcf_r2_v_parp1_mdamb231 0.0830321 0
out_graphs <- lapply(seq(1, nrow(all_comb)), function(i_row){
  use_vars <- as.character(all_comb[i_row,])
  subpoints <- subsample_nonzeros(mcols(tss_windows), use_vars, non_zero = non_zero, n_points = 10000)
  ggplot(subpoints, aes_string(x = use_vars[1], y = use_vars[2])) + geom_point() + scale_y_log10() + scale_x_log10()
})
out_graphs
## [[1]]

plot of chunk graphs

## 
## [[2]]

plot of chunk graphs

## 
## [[3]]

plot of chunk graphs

## 
## [[4]]

plot of chunk graphs

Genome Wide Comparison

Are these correlations a result of association with the TSS's? One way to test this is to set up a calculation genome-wide.

genome_tiles <- tileGenome(seqinfo(Hsapiens), tilewidth = 2000, cut.last.tile.in.chrom = TRUE)

genome_tiles <- binned_function(genome_tiles, mcf7_cov, "sum", "parp1_mcf7")
genome_tiles <- binned_function(genome_tiles, mdamb231_cov, "sum", "parp1_mdamb231")
genome_tiles <- binned_function(genome_tiles, ctcf_r1_cov, "mean_nozero", "ctcf_r1")
genome_tiles <- binned_function(genome_tiles, ctcf_r2_cov, "mean_nozero", "ctcf_r2")
genome_r1_v_mcf7 <- subsample_nonzeros(mcols(genome_tiles), c("ctcf_r1", "parp1_mcf7"), non_zero = non_zero, n_points = 10000)
ggplot(genome_r1_v_mcf7, aes(x = ctcf_r1, y = parp1_mcf7)) + scale_x_log10() + scale_y_log10() + geom_point()

plot of chunk genome_graph_test

cor(log(genome_r1_v_mcf7[,1]+1), log(genome_r1_v_mcf7[,2]+1))
## [1] 0.181062
genome_cor <- lapply(seq(1, nrow(all_comb)), function(i_row){
  #print(i_row)
  correlate_non_zero(mcols(genome_tiles), as.character(all_comb[i_row,]), log_transform = TRUE, non_zero = non_zero, test = TRUE)
})
all_comb_names <- paste(all_comb[,1], all_comb[,2], sep = "_v_")
genome_cor <- do.call(rbind, genome_cor)
rownames(genome_cor) <- all_comb_names

Genome wide correlations:

corr_value p_value
ctcf_r1_v_parp1_mcf7 0.1854415 0
ctcf_r2_v_parp1_mcf7 0.2390277 0
ctcf_r1_v_parp1_mdamb231 0.1608382 0
ctcf_r2_v_parp1_mdamb231 0.1793969 0

Save the correlation results in some plain text files.

saveloc <- "../inst/correlation_tables"
write.table(out_cor, file = file.path(saveloc, "ctcf_tss.txt"), sep = "\t")
write.table(genome_cor, file = file.path(saveloc, "ctcf_genome.txt"), sep = "\t")

Session Info

## [1] "2014-12-11 11:03:33 EST"
## R version 3.1.1 (2014-07-10)
## Platform: x86_64-unknown-linux-gnu (64-bit)
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] fmdatabreastcaparp1_0.0.1           
##  [2] fmcorrelationbreastcaparp1_0.0.1    
##  [3] pracma_1.7.9                        
##  [4] BSgenome.Hsapiens.UCSC.hg19_1.3.1000
##  [5] BSgenome_1.32.0                     
##  [6] Biostrings_2.32.1                   
##  [7] XVector_0.4.0                       
##  [8] ggplot2_1.0.0                       
##  [9] GenomicRanges_1.16.4                
## [10] GenomeInfoDb_1.0.2                  
## [11] IRanges_1.22.10                     
## [12] BiocGenerics_0.10.0                 
## [13] devtools_1.6.1                      
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-6     colorspace_1.2-4 digest_0.6.4     evaluate_0.5.5  
##  [5] formatR_1.0      grid_3.1.1       gtable_0.1.2     knitr_1.7       
##  [9] labeling_0.3     magrittr_1.0.1   markdown_0.7.4   MASS_7.3-35     
## [13] mime_0.2         munsell_0.4.2    plyr_1.8.1       proto_0.3-10    
## [17] Rcpp_0.11.3      reshape2_1.4     Rsamtools_1.16.1 scales_0.2.4    
## [21] stats4_3.1.1     stringr_0.6.2    tools_3.1.1      zlibbioc_1.10.0